| Curriculum | AC9S1U03 | AC9S1U03 | AC9S1U01 | AC9S1U01 | AC9S1U01 | AC9S1U02 | AC9S1U01 | AC9S1U01 | AC9S1U03 | AC9S1U02 | AC9S1U03 | AC9S2U03 | AC9S2U03 | | |--------------|------------------------|---------------------------|---------------------------|-------------------------|------------------------------|--------------------------------|-------------------------------|------------------------|----------------------|-------------------------|---|--|--|-----------------------| | Topic | Push and Pull | Push and Pull | Needs | Animals
Habitat | Habitat
Animals
Needs | Weather
Weather
Forecast | Environment
Pollinators | Environment
Animals | Push and Pull | Shade
Sunlight | Traffic
Problem
Solving | Problem
Solving
Implement
Innovations | Transportation
Engineering
Design | | | Lesson Title | Dino Birthday
Bash | Muddy Rhino | Farm Friends
Road Trip | A Home for
Baby Bird | Animal Hotel | Bad Weather
Bunny | Flower Friends | Forest Play
Day | Feeding Time | Park Picnic | Duck Crossing | Clean
Machine | Roll or Fly | Dino Birthday
Bash | | Curriculum | AC9S1U01 | AC9S1U02 | AC9S5U03 | AC9S2U02 | AC9S1U02 | AC9S1U02 | AC9\$1U01 | AC9\$1U01 | AC9\$1U01 | AC9\$1U01 | AC9S2U02 | AC9S1U03 | AC9S1U03 | AC9S1U03 | | Торіс | Survival
Offspring | Light and Dark | Plants
Traits | Communication | Sun
Patterns | Sun
Seasons | Biomimicry
Camouflage | Animal
Mimicry | Offspring
Parents | Heredity
Traits | Communication
Sound | Problem
Solving | Problem
Solving
Shapes | Testing
Solutions | | Lesson Title | Best of Nests | Dim Dance
Party | Flower
Families | Light Monster | What the Sun
Sees | Sunshine
Parade | Perfect Hiding
Spot | Worms for
Dinner | Dragon Care | Monster Kinder | Secret
Celebration | Rocky Road
Skateboard | Windy Valley | Car With Arm | | Curriculum | AC9S1U03 | AC9S2U03 | AC9S1U05 | AC9S1U05 | AC9S1U03 | AC9S2I01 | AC9S1U02 | AC9S1U02 | AC9S2U01 | AC9S2U01 | AC9S1U03 | AC9S1U03 | AC9S1U03 | | | Торіс | Greeting
Properties | Properties
Materials | Properties | Problem
Solving | Problem
Solving
Shapes | Conservation
of Matter | Erosion
Problem
Solving | Maps | Seeds
Animals | Habitat
Biodiversity | Problem
Solving
Solution
Diversity | Solution
Diversity
Problem
Solving | Problem
Solving
Comparing
Solutions | | | Lesson Title | Kitty Greetings | Troll Under the
Bridge | Sort It Out | Jungle
Adventure | Beach
Chicken | Fun Place
Space | Beach House
Builder | Bird's Eye View | Hide the Seeds | Animal Rescue
Team | Spin
Spectacular | Puck and Bot | Mini Mixer | | | | Curriculum | AC9S3U01 | AC9S3U03 | AC9S3U01 | AC9S3U02 | AC9S3U01 | AC9S3U01 | AC9S3U01 | AC9S3U01 | AC9S4U03 | AC9S4U03 | AC9S4U02 | AC9S4U03 | AC9S4U03 | | |------------|--------------|--------------------------|--------------------------|-------------------------------------|------------------------------------|--------------------------|---------------------------|--|-------------------------|--------------------------|---|--|-----------------------------------|-----------------------------------|-------------------------| | (9 | Торіс | Life Cycle
Animals | Survival
Animals | Fossils | Camouflage
Natural
Selection | Habitat
Adaptation | Heredity | Invasive
Species
Environmental
Change | Forces
Motion | Motion | Hazardous
Weather
Solution Design | Problem
Solving
Criteria | Solution
Diversity
Criteria | Problem
Solving
Environment | | | r 5-0 | Lesson Title | From Egg to
What | Protect Baby
Elephant | Fossil
Detective | Spot the Bug | Home at Last | Fire and Horns | Hungry,
Hungry
Lionfish | Sweet-Tooth
Squirrel | Golfing Over
the Edge | Teeny Tiny
Home | Truck Rally | Legs for Fetch | Grabber Arm | | | (Yea | Curriculum | AC9S4U03 | AC9S3U01 | AC9S4U01 | AC9S4U04 | AC9S4U03 | AC9S4U02 | AC9S4U02 | AC9S4U03 | AC9S2U02 | AC9S4U03 | AC9S4U04 | AC9S4U03 | AC9S4U03 | AC9S4U03 | | Primary () | Торіс | Fossils | Plants
Animals | Environment
Natural
Resources | Earthquakes
Natural
Hazards | Survival
Adaptation | Senses | Energy
Speed | Energy
Transfer | Energy
Collision | Communication
Solution
Diversity | Potential and
Kinetic Energy
Conversion of
Energy | Criteria
Constraints | Solution
Design
Criteria | Fair Tests
Variables | | | Lesson Title | Deep Down
Underground | Plant Powers | Nature Party | Lemonade
Shake | Ra-Ra-
Rattlesnake! | Navigating the
Unknown | Energy Racer | Feel the Beat | Crush the
Core | Control the Roll | Disco Snail | Turning
Towers | Ocean Disco | Bug Bot Rac | | 2 | Curriculum | AC9S4U03 | AC9S4U01 | AC9S4U01 | AC9S5U04 | AC9S5H02 | AC9S5U02 | AC9S5U04 | AC9S5U03 | AC9S4U04 | AC9S6U01 | AC9S6U01 | AC9S6U01 | AC9S5U01 | | | 5 | Торіс | Gravity | Food Chain | Particles | Environment
Resources | Environment
Resources | Particles | Conservation
of Matter | Properties | Matter
Ecosystems | Food Chain
Energy | Wildlife
Criteria | Problem
Solving
Criteria | Fair Tests
Prototypes | | | | Lesson Title | Down With
Gravity | Sun Snack | Stink Squad | Desert Island
Community | Twin Scoops | Slow-Down
Race | Snacking
Seagull | Wheel of
Properties | Circle of Soil | Energy Chain | Critter
Crossing | Hungry
Machine | Life on a New
Planet | | | | Curriculum | AC9S7U04 | AC9S7U02 | AC9S7I04 | AC9S9U07 | AC9S7U02 | AC9S7U03 | AC9S10U02 | AC9S8H03 | AC9S7I04 | AC9S10U01 | AC9S7U02 | AC9S9U02 | AC9S8U02 | AC9S8U01 | | |-----------|---------------------|---|---|---|--|---|--|---|---|--|------------------------------|--|--|---------------------------|------------------------|--| | | Торіс | Ecosystems | Severe
Weather | Chemical
Reaction
Conservation
of Mass | Human Impact
Environment | Earth
Space | Traits
Survival | Resources
Population | Iterative
Testing | Traits | Environmental
Factors | Animals
Reproduction | Energy
Photosynthesis | Cells | Cells | | | /-10) | Lesson Title | Forest
Showdown | Windy City | A Breath of
Fresh Space | Save the
Salmon | Building
Space | Conceal the
Meal | Population
Pressure | Game of Goals | Trait Selector | Big Fish in a
Little Pond | Ostrich Dance | Supercharged
Plants | Cell City | More than a
Nucleus | | | (Year 7 | Curriculum | AC9S8U01 | AC9S7U02 | AC9S8U05 | AC9S7U04 | AC9S9U01 | AC9S9U01 | AC9S8U05 | AC9S7U04 | AC9S7U02 | AC9S7U02 | AC9S7U01 | AC9S8U05 | AC9S8U05 | | | | | Торіс | Resources
Population | Kinetic Energy
Energy
Transfer | Collision
Newton's
Third Law | Sense
Brain | Animals
Inputs | Kinetic Energy | Sum of Forces | Ecosystems
Matter | Biodiversity
Solution
Design | Ecosystems
Patterns | Criteria
Solution
Design | Criteria
Solution Design | Ecosystems
Energy | | | | onda | Lesson Title | Fish Food | Kinetic Kicker | Push Power | Rapid
Reaction | Bee-ware | Spinning and
Winning | Double the
Push | Move the
Matter | Bats on the
Brink | Rivals and
Allies | Loch Ness
Express | Cow on the
Roof | Chickens in
Space | | | | Sec | Curriculum | AC9S7U02 | AC9S8U05 | AC9S8U05 | AC9S8U03 | AC9S10U02 | AC9S10U02 | AC9S8H03 | AC9S8U05 | AC9S9U02 | AC9S7U05 | AC9S7U04 | AC9S8U05 | AC9S7U02 | | | | | Topic | Solution
Design
Iterative
Testing | Solution
Design
Iterative
Testing | Natural
Disasters | Natural
Selection
Traits | Reproduction
Offspring | Environmental
Impact | Solution
Design
Criteria | Animal
Behaviour
Offspring | States of
Matter | Forces
Motion | Energy
Energy
Transfer | Biodiversity
Solution Design | Traits
Survival | | | | | Lesson Title | Operate in
Colour | Up Top Robot | Shaking
Signals | Frosty Fur and
Frozen Feet | Aliens Alike
and Not Quite | Food Festival
Fix | Robotic
Restaurant | Feathers, Fur
and Family | Troll Stole My
Soup | Hit It, Move It | Energy
Booster | Blades and
Barnacles | Polar Paws | | | | Secondary | Curriculum
Topic | AC9S7U02 Solution Design Iterative Testing Operate in | AC9S8U05 Solution Design Iterative Testing | AC9S8U05 Natural Disasters Shaking | Reaction AC9S8U03 Natural Selection Traits Frosty Fur and | AC9S10U02 Reproduction Offspring Aliens Alike | AC9S10U02 Environmental Impact Food Festival | AC9S8H03 Solution Design Criteria Robotic | AC9S8U05 Animal Behaviour Offspring Feathers, Fur | AC9S9U02 States of Matter Troll Stole My | AC9S7U05 Forces Motion | AC9S7U04 Energy Energy Transfer Energy | AC9S8U05 Biodiversity Solution Design Blades and | AC9S7U02 Traits Survival | | | Lower Primary (Year 1-2) | Lesson Title | Dino Birthday
Bash | Muddy Rhino | Farm Friends
Road Trip | A Home for
Baby Bird | Animal Hotel | Bad Weather
Bunny | Flower Friends | Forest Play Day | Feeding Time | Park Picnic | Duck Crossing | Clean Machine | Roll or Fly | |---------------------------
--|--|---|---|---|--|---|---|--|--|--|--|--| | Lesson
Description | Students will
investigate the
effects of
pushes and
pulls on the
motion of an
object. | Students will design a solution to change the direction of a moving object with a push or a pull, and then test if it works as intended. | Students will
build a model to
describe what
animals and
plants need to
survive. | Students will
create a model
to show how
animals can
change the
environment to
meet their
needs. | Students will
build a model to
show the
different needs
of different
animals. | Students will
use the
information
from a weather
forecast to
prepare for
severe weather. | Students will create a solution that reduces the impact of humans on other living things in the local environment. | Students will
use a model to
represent the
relationship
between the
needs of
animals and the
places they live. | Students will conduct an investigation to compare the effects of different push strengths on the motion of an object. | Students will
design and build
a structure that
will reduce the
warming effect
of the sunlight. | Students will
define a simple
problem and
solve it by
developing an
object or tool. | Students will
develop a
model to
illustrate how
the shape of an
object helps it
function as
needed to solve
a given
problem. | Students will analyse different objects designed to solve the same problem to compare strengths and weaknesses. | | Curriculum | AC9S1U03 | AC9S1U03 | AC9S1U01 | AC9S1U01 | AC9S1U01 | AC9S1U02 | AC9S1U01 | AC9S1U01 | AC9S1U03 | AC9S1U02 | AC9S1U03 | AC9S2U03 | AC9S2U03 | | Curriculum
Description | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Describe daily
and seasonal
changes in the
environment
and explore how
these changes
affect everyday
life. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Describe daily
and seasonal
changes in the
environment
and explore how
these changes
affect everyday
life. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Recognise that materials can be changed physically without changing their material composition and explore the effect of different actions on materials including bending, twisting, stretching and breaking into smaller pieces. (Year 2) | Recognise that materials can be changed physically without changing their material composition and explore the effect of different actions on materials including bending, twisting, stretching and breaking into smaller pieces. (Year 2) | Lower Primary (Year 1-2) | Les | sson Title | Best of Nests | Dim Dance
Party | Flower
Families | Light
Monster | What the
Sun Sees | Sunshine
Parade | Perfect
Hiding Spot | Worms for
Dinner | Dragon Care | Monster
Kinder | Secret
Celebration | Rocky Road
Skateboard | Windy
Valley | Car With
Arms | |-----|---------------------|--|--------------------|---|--|---|---|---|---|---|---|--|--|--|---| | | Lesson
scription | Students will
build a
model to
show how
parent birds
help their
offspring
survive. | to explain | Students will make observations to construct an account that young plants are like, but not exactly like, their parents. | Students will
build a
device that
uses light to
solve the
problem of
communicati
ng over a
distance. | Students will
use a model
to describe
patterns of
the sun that
can be
predicted. | Students will use a model to explain the relationship between the amount of daylight and the time of year. | Students will design a solution to a human problem by mimicking how animals use their external parts to help them survive. | Students will design a solution to a human problem by mimicking how animals use their external parts to help them meet their needs. | Students will
use a model
to show
patterns in
behaviour of
parents and
offspring
that help
offspring
survive. | Students will use observations to explain that offspring are like, but not exactly like, their parents. | Students will
use materials
to build a
device that
uses sound
to solve the
problem of
communicati
ng over a
distance. | Students will define a problem that can be solved through the development of an improved object and test their solution. | Students will
develop a
physical
model to
illustrate
how the
shape of a
house
impacts its
function. | Students will analyse data from tests of two objects designed to solve the same problem to compare strengths and weaknesses of the two designs. | | Cu | ırriculum | AC9S1U01 | AC9S1U02 | AC9S5U03 | AC9S2U02 | AC9S1U02 | AC9S1U02 | AC9S1U01 | AC9S1U01 | AC9S1U01 | AC9S1U01 |
AC9S2U02 | AC9S1U03 | AC9S1U03 | AC9S1U03 | | | | AC9S1U01:
Identify the
basic needs
of plants and
animals,
including air,
water, food
or shelter,
and describe
how the
places they
live meet
those needs.
(Year 1) | | Identify sources of light, recognise that light travels in a straight path and describe how shadows are formed and light can be reflected and refracted. (Year 5) | Investigate the effect of light and sound on objects and explore how these forms of energy are transferred. (Year 2) | Describe daily and seasonal changes in the environment and explore how these changes affect everyday life. (Year 1) | Describe daily and seasonal changes in the environment and explore how these changes affect everyday life. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Identify the basic needs of plants and animals, including air, water, food or shelter, and describe how the places they live meet those needs. (Year 1) | Investigate the effect of light and sound on objects and explore how these forms of energy are transferred. (Year 2) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Lower Primary (Year 1-2) | Lesson Title | Kitty Greetings | Troll Under the
Bridge | Sort It Out | Jungle
Adventure | Beach Chicken | Fun Place Space | Beach House
Builder | Bird's Eye View | Hide the Seeds | Animal Rescue
Team | Spin
Spectacular | Puck and Bot | Mini Mixer | |---------------------------|--|--|--|--|--|---|--|--|---|---|---|--|---| | Lesson
Description | Students will investigate the properties of different materials. | | Students will
describe and
classify
materials
according to
their observable
properties. | Students will
explain how an
object made
from a set of
pieces can be
disassembled
and made into a
new object. | Students will
develop a
physical model
to illustrate how
the shape of an
object helps it
function. | Students will make observations to describe how an object made of a small set of pieces can be disassembled and made into a new object. | Students will
compare
solutions
designed to
slow or prevent
water from
changing the
land. | Students will
develop a model
to represent the
shapes and
kinds of land
and bodies of
water in an area. | Students will
use a model to
describe how an
animal can
function to
disperse seeds. | Students will
create a model
to describe the
diversity of life
in a single
habitat. | Students will ask questions and make observations about a situation people want to change to define a simple problem that can be solved by developing an improved object. | Students will
develop a
simple model to
illustrate how
the shape of an
object functions
to solve a given
problem. | Students will analyse tests from two objects designed to solve the same problem by comparing strengths and weaknesses of how each performs. | | Curriculum | AC9S1U03 | AC9S2U03 | AC9S1U05 | AC9S1U05 | AC9S1U03 | AC9S2I01 | AC9S1U02 | AC9S1U02 | AC9S2U01 | AC9S2U01 | AC9S1U03 | AC9S1U03 | AC9S1U03 | | Curriculum
Description | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Recognise that materials can be changed physically without changing their material composition and explore the effect of different actions on materials including bending, twisting, stretching and breaking into smaller pieces. (Year 2) | Everyday
materials can be
physically
changed or
combined with
other materials
in a variety of
ways for
particular
purposes. (1-2) | Everyday
materials can be
physically
changed or
combined with
other materials
in a variety of
ways for
particular
purposes. (1-2) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Recognise that materials can be changed physically without changing their material composition and explore the effect of different actions on materials including bending, twisting, stretching and breaking into smaller pieces. | Describe daily
and seasonal
changes in the
environment
and explore how
these changes
affect everyday
life. (Year 1) | Describe daily
and seasonal
changes in the
environment
and explore how
these changes
affect everyday
life. (Year 1) | Recognise that materials can be changed physically without changing their material composition and explore the effect of different actions on materials including bending, twisting, stretching and breaking into smaller pieces. | Recognise that materials can be changed physically without changing their material composition and explore the effect of different actions on materials including bending, twisting, stretching and breaking into smaller pieces. | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Describe pushes and pulls in terms of strength and direction and predict the effect of these forces on objects' motion and shape. (Year 1) | Upper Primary (Year 3-6) | Lesson Title | From Egg to
What | Protect Baby
Elephant | Fossil
Detective | Spot the Bug | Home at Last | Fire and
Horns | Hungry,
Hungry
Lionfish | Sweet-Tooth
Squirrel | Golfing Over
the Edge | Teeny Tiny
Home | Truck Rally | Legs for Fetch | Grabber Arm | |---------------------------|---|---|---|--|--|---|--|--
--|--|--|--|--| | Lesson
Description | Students will develop a model of the unique life cycle of an animal and compare some common aspects of all life cycles such as birth, growth, reproduction and death. | Students will use a model to construct an argument that living in a group helps elephants protect their offspring. | Students will analyse and interpret information from fossils to provide evidence of organisms and the environments in which they lived long ago. | Students will construct an explanation for how variations in the colours of the same species of insects may provide advantages for individuals that help them survive. | Students will make a claim about the likelihood of different animals surviving in a specific environment. | Students will
use evidence
to explain how
traits are
inherited from
parents and
can vary
among
offspring. | Students will make a claim about the merit of a solution to a problem caused when an invasive species changes an environment and the animals living in it. | Students will use evidence to explain the effect of balanced and unbalanced forces on an object. | Students will make observations of an object's motion to provide evidence that a pattern can be used to predict future motion. | Students will make a claim about the merit of a design solution that reduces the impacts of a local weather-related hazard. | Define a simple design problem reflecting a want that includes specified criteria for success and constraints on materials and time. | Students will create solutions to a problem and test to compare how well they perform. | Students will plan and carry out tests to identify aspects of a model that can be improved. | | Curriculum | AC9S3U01 | AC9S3U03 | AC9S3U01 | AC9S3U02 | AC9S3U01 | AC9S3U01 | AC9S3U01 | AC9S3U01 | AC9S4U03 | AC9S4U03 | AC9S4U02 | AC9S4U03 | AC9S4U03 | | Curriculum
Description | Identify sources of heat energy and examine how temperature changes when heat energy is transferred from one object to another | Compare characteristics of living and non-living things and examine the differences between the life cycles of plants and animals | Identify
sources of
heat energy
and examine
how
temperature
changes when
heat energy is
transferred
from one
object to
another | Compare the observable properties of soils, rocks and minerals and investigate why they are important Earth resources | Identify sources of heat energy and examine how temperature changes when heat energy is transferred from one object to another | Identify sources of heat energy and examine how temperature changes when heat energy is transferred from one object to another | Identify sources of heat energy and examine how temperature changes when heat energy is transferred from one object to another | Identify sources of heat energy and examine how temperature changes when heat energy is transferred from one object to another | Identify how
forces can be
exerted by
one object on
another and
investigate
the effect of
frictional,
gravitational
and magnetic
forces on the
motion of
objects | Identify how
forces can be
exerted by
one object on
another and
investigate
the effect of
frictional,
gravitational
and magnetic
forces on the
motion of
objects | Identify how
forces can be
exerted by
one object on
another and
investigate
the effect of
frictional,
gravitational
and magnetic
forces on the
motion of
objects | Identify how
forces can be
exerted by
one object on
another and
investigate
the effect of
frictional,
gravitational
and magnetic
forces on the
motion of
objects | Identify how
forces can be
exerted by
one object on
another and
investigate
the effect of
frictional,
gravitational
and magnetic
forces on the
motion of
objects | Upper Primary (Year 3-6) | Lesson Title | Deep Down
Underground | Plant
Powers | Nature Party | Lemonade
Shake | Ra-Ra-
Rattlesnake! | Navigating
the
Unknown | Energy
Racer | Feel the
Beat | Crush the
Core | Control the
Roll | Disco Snail | Turning
Towers | Ocean Disco | Bug Bot
Race | |---------------------------|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | Lesson
Description | Students will
use a model
to explain that
changes
happen in a
landscape
over time. | the survival
and growth
of plants | Students will explain that energy is derived from natural resources and describe how its use affects the environment. | Students will create and compare solutions to reduce the impact of earthquakes. | Students will construct an argument that animals have external structures that function to support survival. | Students will use a model to investigate how animals receive information through their senses and process it in order to respond to their environment. | Students will
use evidence
to explain
that the
faster an
object
moves, the
more energy
it has. | Students will make observations to provide evidence that energy can be transferred from place to place by sound. | Students will ask questions and predict outcomes about the changes in energy that occur when objects collide. | Students will generate and compare multiple solutions for transferring information to safely park airplanes at an airport. | Students will create, test and refine a device that converts energy from one form to another. | Students will define a simple design problem and develop a solution that includes specified criteria for success and constraints. | Students will generate and compare multiple solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. | Students will carry out fair tests in which variables are controlled and failure points are considered in order to identify aspects of a prototype model that can be improved. | | Curriculum | AC9S4U03 | AC9S3U01 | AC9S4U01 | AC9S4U04 | AC9S4U03 | AC9S4U02 | AC9S4U02 | AC9S4U03 | AC9S2U02 | AC9S4U03 | AC9S4U04 | AC9S4U03 | AC9S4U03 | AC9S4U03 | | Curriculum
Description | Identify how
forces can be
exerted by
one object on
another and
investigate
the effect of
frictional,
gravitational
and magnetic
forces on the
motion of
objects | Identify sources of heat energy and examine how temperature
changes when heat energy is transferred from one object to another | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | Identify how
forces can
be exerted
by one
object on
another and
investigate
the effect of
frictional,
gravitational
and
magnetic
forces on the
motion of
objects | | Lesson Title | Down With
Gravity | Sun Snack | Stink Squad | Desert Island
Community | Twin Scoops | Slow-Down
Race | Snacking
Seagull | Wheel of
Properties | Circle of Soil | Energy Chain | Critter
Crossing | Hungry
Machine | Life on a New
Planet | |---------------------------|--|---|---|---|---|---|--|---|--|---|---|---|--| | Lesson
Description | Students will support an explanation that gravity pulls objects down, toward the center of the Earth. | Students will use a model to describe that energy in animals' food was once energy from the sun. | Students will use and develop models to describe that smell is connected to bulk matter and is made of particles too small to be seen. | Students will model ways individuals and communities use scientific ideas to protect Earth's resources and the environment. | Students will explain how communities can use scientific ideas to protect Earth's resources and the environment. | Students will develop a model to describe particles in the air that are too small to be seen. | Students will make observations to provide evidence that regardless of the change that occurs when the elements of a model are mixed, the total weight is conserved. | Students will make observations to identify materials based on their properties. | Students will develop a model to describe the movement of matter among plants, animals and decomposers in an ecosystem. | Students will
build a model
to describe
that energy in
animals' food
was once
energy from
the Sun. | Students will define a simple design problem that reflects a need with specified criteria for success. | Students will generate and compare multiple solutions to a problem based on how well each meets the criteria of the problem. | Students will plan and carry out fair tests in which variables are controlled and failure points are considered in order to identify aspects of a model or prototype that can be improved. | | Curriculum | AC9S4U03 | AC9S4U01 | AC9S4U01 | AC9S5U04 | AC9S5H02 | AC9S5U02 | AC9S5U04 | AC9S5U03 | AC9S4U04 | AC9S6U01 | AC9S6U01 | AC9S6U01 | AC9S5U01 | | Curriculum
Description | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | Explain the roles and interactions of consumers, producers and decomposers within a habitat and how food chains represent feeding relationships | Explain the roles and interactions of consumers, producers and decomposers within a habitat and how food chains represent feeding relationships | Explain
observable
properties of
solids, liquids
and gases by
modelling the
motion and
arrangement
of particles | Investigate how scientific knowledge is used by individuals and communities to identify problems, consider responses and make decisions | Describe how weathering, erosion, transportation and deposition cause slow or rapid change to Earth's surface | Explain
observable
properties of
solids, liquids
and gases by
modelling the
motion and
arrangement
of particles | Describe how changes to the states of matter and combinations of substances involve the addition or removal of heat, and identify which changes can be reversed or irreversible | Identify how forces can be exerted by one object on another and investigate the effect of frictional, gravitational and magnetic forces on the motion of objects | plan and conduct repeatable investigations to answer questions, including identifying variables and planning fair tests | plan and conduct repeatable investigations to answer questions, including identifying variables and planning fair tests | plan and
conduct
repeatable
investigations
to answer
questions,
including
identifying
variables and
planning fair
tests | examine how
particular
structural
features and
behaviours of
living things
enable their
survival in
specific
habitats | Secondary (Year 7-10) | Lesson Title | Forest
Showdown | Windy City | A Breath of
Fresh Space | Save the
Salmon | Building Space | Conceal the
Meal | Population
Pressure | Game of Goals | Trait Selector | Big Fish in a
Little Pond | Ostrich Dance | Supercharged
Plants | Cell City | More than a
Nucleus | |---------------------------|---|---|--|---|---|---|---
---|--|---|---|--|--|--| | Lesson
Description | Students will support an argument that changes to the components of an ecosystem affect populations and will then evaluate design solutions for maintaining biodiversity. | Students will
analyze an area
and design
solutions to
forecast and
mitigate the
effects of a
hurricane. | Students will use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved. | Students will
design a
method for
monitoring and
minimizing a
human impact
on the
environment. | Students will
develop and
use a model of
the Earth-Sun-
Moon system
to describe the
cyclic pattern
of eclipses of
the Sun. | Students will construct an explanation that describes how variations of traits in a population increase some individual's probability of surviving in a specific environment. | Students will construct an argument that explains how increases in human population impact Earth's resources. | Students will use a model to generate data for iterative testing and modification such that an optimal design can be achieved. | Students will explain how humans can influence the inheritance of desired traits in organisms. | Students will construct an explanation for how environmenta I factors influence the growth of organisms. | Students will use
a model to
explain how
characteristic
animal behaviors
affect the
probability of
successful
reproduction. | Students will
construct an
explanation
for the role of
photosynthesi
s in the flow
of energy on
Earth. | Students will
develop and
use a model to
represent the
ways parts of a
cell contribute
to the function
of the whole
cell. | Students will develop and use a model to describe the function of a cell as a whole and the ways parts of cells contribute to the function. | | Curriculum | AC9S7U04 | AC9S7U02 | AC9S7I04 | AC9S9U07 | AC9S7U02 | AC9S7U03 | AC9S10U02 | AC9S8H03 | AC9S7I04 | AC9S10U01 | AC9S7U02 | AC9S9U02 | AC9S8U02 | AC9S8U01 | | Curriculum
Description | investigate and represent balanced and unbalanced forces, including gravitational force, acting on objects, and relate changes in an object's motion to its mass and the magnitude and direction of forces acting on it | use models, including food webs, to represent matter and energy flow in ecosystems and predict the impact of changing abiotic and biotic factors on populations | select and
construct
appropriate
representation
s, including
tables, graphs,
models and
mathematical
relationships,
to organise and
process data
and
information | model the rearrangement of atoms in chemical reactions using a range of representation s, including word and simple balanced chemical equations, and use these to demonstrate the law of conservation of mass | use models, including food webs, to represent matter and energy flow in ecosystems and predict the impact of changing abiotic and biotic factors on populations | model cyclic changes in the relative positions of the Earth, sun and moon and explain how these cycles cause eclipses and influence predictable phenomena on Earth, including seasons and tides | use the theory
of evolution by
natural
selection to
explain past
and present
diversity and
analyse the
scientific
evidence
supporting the
theory | examine how
proposed
scientific
responses to
contemporary
issues may
impact on
society and
explore ethical,
environmental,
social and
economic
considerations | select and
construct
appropriate
representation
s, including
tables, graphs,
models and
mathematical
relationships,
to organise and
process data
and
information | explain the role of meiosis and mitosis and the function of chromosomes , DNA and genes in heredity and predict patterns of Mendelian inheritance | use models, including food webs, to represent matter and energy flow in ecosystems and predict the impact of changing abiotic and biotic factors on populations | describe the form and function of reproductive cells and organs in animals and plants, and analyse how the processes of sexual and asexual reproduction enable survival of the species | analyse the relationship between structure and function of cells, tissues and organs in a plant and an animal organ system and explain how these systems enable survival of the individual | recognise cells
as the basic
units of living
things,
compare plant
and animal
cells, and
describe the
functions of
specialised cell
structures and
organelles | Secondary (Year 7-10) | Lesson Title | Fish Food | Kinetic Kicker | Push Power | Rapid Reaction | Bee-ware | Spinning and
Winning | Double the Push | Move the Matter | Bats on the
Brink | Rivals and Allies | Loch Ness
Express | Cow on the
Roof | Chickens in
Space | |---------------------------|---|---|---|---|--|--|--|---|---|---|--|---|---| | Lesson
Description | Students will
analyze the
effects of
resource
availability on
different
organisms and
populations of
organisms in an
ecosystem. | Students will construct a device to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. | Students will
apply Newton's
third law to
design a
solution to a
problem. | Students will explain that senses respond to stimuli by sending messages to the brain for immediate behavior or storage as memories. | Students will use a model to explain that sensory receptors respond to inputs by sending messages to the brain for immediate behavior or storage as memories. | Students will investigate and describe the relationships of kinetic energy to the mass of an object and to the speed of an object. | Students will plan an investigation to provide evidence that the change in an object's motion depends on the sum of the forces on the object and the mass of the object. | Students will
develop a model
to describe the
cycling of
matter among
living and
nonliving parts
of an
ecosystem. | competing
design solutions
to solve a
problem related | Students will
describe
patterns of
interactions
among
organisms
across multiple
ecosystems. | Students will describe the components of a problem and design a solution by defining criteria and constraints including potential impacts on humans and the
environment. | Students will evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of a given problem. | Students will
develop a model
to describe the
cycling of
matter and flow
of energy
among living
and nonliving
parts of an
ecosystem. | | Curriculum | AC9S8U01 | AC9S7U02 | AC9S8U05 | AC9S7U04 | AC9S9U01 | AC9S9U01 | AC9S8U05 | AC9S7U04 | AC9S7U02 | AC9S7U02 | AC9S7U01 | AC9S8U05 | AC9S8U05 | | Curriculum
Description | recognise cells
as the basic
units of living
things, compare
plant and animal
cells, and
describe the
functions of
specialised cell
structures and
organelles | use models, including food webs, to represent matter and energy flow in ecosystems and predict the impact of changing abiotic and biotic factors on populations | classify different
types of energy
as kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | investigate and represent balanced and unbalanced forces, including gravitational force, acting on objects, and relate changes in an object's motion to its mass and the magnitude and direction of forces acting on it | compare the role of body systems in regulating and coordinating the body's response to a stimulus, and describe the operation of a negative feedback mechanism | compare the role of body systems in regulating and coordinating the body's response to a stimulus, and describe the operation of a negative feedback mechanism | classify different
types of energy
as kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | investigate and represent balanced and unbalanced forces, including gravitational force, acting on objects, and relate changes in an object's motion to its mass and the magnitude and direction of forces acting on it | webs, to
represent
matter and
energy flow in
ecosystems and
predict the
impact of | use models, including food webs, to represent matter and energy flow in ecosystems and predict the impact of changing abiotic and biotic factors on populations | investigate the role of classification in ordering and organising the diversity of life on Earth and use and develop classification tools including dichotomous keys | classify different
types of energy
as kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | classify different
types of energy
as kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | Secondary (Year 7-10) | L | esson Title | Operate in
Colour | Up Top Robot | Shaking Signals | Frosty Fur and
Frozen Feet | Aliens Alike and
Not Quite | Food Festival
Fix | Robotic
Restaurant | Feathers, Fur
and Family | Troll Stole My
Soup | Hit It, Move It | Energy Booster | Blades and
Barnacles | Polar Paws | |---|---------------------------|---|--|--|---|---|--|---|---|--|---|---|---|---| | C | Lesson
Description | Students will generate data through testing to help them plan an optimal design process. | Students will develop a model for iterative testing and modification such that an optimal design can be achieved. | Students will
develop a
device to obtain
data about
earthquakes and
mitigate their
effects. | Students will use a model to show how natural selection may lead to increases and decreases of specific traits in populations over time. | Students will develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation. | Students will
design a
method for
minimizing and
monitoring a
human impact
on the
environment. | Students will define the criteria and constraints of a design problem, taking into account ways the environment may limit possible solutions. | Students will use models to support an explanation for how characteristic animal behaviors affect the probability of successful reproduction. | Students will develop a model that describes changes in particle motion, temperature, and state of a substance when thermal energy is added or removed. | Students will plan an investigation to provide evidence that the change in an object's motion depends on the sum of forces acting on the object and the mass of the object. | Students will use a model to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object. | Students will
evaluate
competing
design solutions
for maintaining
biodiversity
using agreed
upon criteria
and constraints. | Students will describe how genetic variations of traits in a population increase some individuals' probability of surviving in a specific environment. | | C | Curriculum | AC9S7U02 | AC9S8U05 | AC9S8U05 | AC9S8U03 | AC9S10U02 | AC9S10U02 | AC9S8H03 | AC9S8U05 | AC9S9U02 | AC9S7U05 | AC9S7U04 | AC9S8U05 | AC9S7U02 | | | Curriculum
Description | use models, including food webs, to represent matter and energy flow in ecosystems and predict the impact of changing abiotic and biotic factors on populations | classify
different types
of energy as
kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | use the theory of evolution by natural selection to explain past and present diversity and analyse the scientific evidence supporting the theory | investigate tectonic activity including the formation of geological features at divergent, convergent and transform plate boundaries and describe the scientific evidence for the theory of plate tectonics | use the theory of evolution by natural selection to explain past and present diversity and analyse the scientific evidence supporting the theory | use the theory of evolution by natural selection to explain past and present diversity and analyse the scientific evidence supporting the theory | examine how
proposed
scientific
responses to
contemporary
issues may
impact on
society and
explore ethical,
environmental,
social and
economic
considerations | classify different
types of energy
as kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | describe the form and function of reproductive cells and organs in animals and plants, and analyse how the processes of sexual and asexual reproduction enable survival of the species | use particle theory to describe the arrangement of particles in a substance, including the motion of and attraction between particles, and relate this to the properties of the substance | investigate and represent balanced and unbalanced forces, including gravitational force, acting on objects, and relate changes in an object's motion to its mass and the magnitude and direction of forces acting on it | classify different
types of energy
as kinetic or
potential and
investigate
energy transfer
and
transformations
in simple
systems | use models,
including food
webs, to
represent
matter and
energy flow in
ecosystems and
predict the
impact of
changing abiotic
and biotic
factors on
populations |